*

Black Bream (2023)

Acanthopagrus butcheri

  • Victorian Fisheries Authority (Victorian Fisheries Authority)
  • Matt Broadhurst (New South Wales Department of Primary Industries)
  • Jason Earl (South Australian Research and Development Institute)
  • Rodney Duffy (Department of Primary Industries and Regional Development, Western Australia)
  • Ruth Sharples (Institute for Marine and Antarctic Studies, University of Tasmania)

Date Published: June 2023

You are currently viewing a report filtered by jurisdiction. View the full report.

Toggle content

Summary

Black Bream is a primarily estuarine species found around Australia's southern coastline. Assessments are presented here for nine management units, distributed along the coasts of NSW, VIC, TAS, SA and WA. Of these units, three are classified as sustainable, one as recovering, one as depleted, and four as undefined.

Toggle content

Stock Status Overview

Stock status determination
Jurisdiction Stock Stock status Indicators
South Australia Lakes and Coorong Fishery Depleted

Catch, targeted effort, age composition

South Australia South Australia Marine Scalefish Fishery Sustainable

Catch, CPUE

Toggle content

Stock Structure

Black Bream have a wide distribution in the estuaries of southern Australia from central New South Wales to the central Western Australian coast, including Tasmania [Kailola et al. 1993]. Black Bream are estuarine-dependent, completing much of their life cycle within a single estuary [Chaplin et al. 1997; Conron et al. 2016; Earl et al. 2016]. Genetic studies of Black Bream in Victoria and Western Australia have indicated that, while there has been gene flow between adjacent estuaries, there is evidence of isolation by distance between populations [Chaplin et al. 1997; Farrington et al. 2000; Burridge et al. 2004; Burridge and Versace 2007; Sarakinis et al. 2024]. Results of tagging studies conducted in the Swan River [Norriss et al. 2002], Gippsland Lakes [Butcher and Ling 1962; Hindell et al. 2008] and the Coorong estuary [Hall 1984] found limited or no evidence of coastal migration or emigration between estuaries. This indicates that estuarine Black Bream populations should be managed as distinct biological stocks. However, for most fisheries management agencies this is not practical.

Black Bream and the closely related Yellowfin Bream, Acanthopagrus australis, also exhibit considerable levels of hybridisation where their distributions overlap in south-eastern Australia [Farrington et al. 2000; Roberts et al. 2009, 2010, 2011; Ochwada-Doyle et al. 2012], further complicating status determination. Furthermore, Black Bream growth, size- and age-at-maturity and recruitment are strongly influenced by environmental conditions, particularly freshwater influx into estuaries [Norriss et al. 2002; Cottingham 2008]. It is therefore likely that over local scales at least, annual recruitment strength depends on environmental conditions, with substantial inter-annual variation in recruitment affecting individual stock demographics and biomasses. These environmental drivers complicate management across multiple catchments.

Here, assessment of stock status is presented at the management unit level—Western Australia West Coast Estuaries, Western Australia South Coast Estuaries (Western Australia); Southern New South Wales (New South Wales); Victoria Western Estuaries, The Gippsland Lakes, Victoria Eastern Estuaries (Victoria); Tasmania Scalefish Fishery (Tasmania); Lakes and Coorong Fishery and South Australia Marine Scalefish Fishery (South Australia).

Toggle content

Stock Status

Lakes and Coorong Fishery

The Lakes and Coorong Fishery (LCF) has historically been the most important of South Australia’s commercial fisheries for Black Bream, accounting for around 85% of the state’s total commercial catch of the species since the 1980s. The Lakes and Coorong Black Bream stock encompasses the populations in the Coorong Estuary and Lower Lakes and has been classified as depleted since 2016 [Earl et al. 2016]. The most recent assessment of this stock was completed in 2023 and used a weight-of-evidence approach that considered fishery data up to 30 June 2022, and a 14-year time series of annual age structures up to 2021–22 [Ye et al. 2022; Earl 2023].  

The primary measures for biomass and fishing mortality are total catch and targeted effort from LCF gillnet fishers and fishery age structures. Total catches of Black Bream by the LCF were greater than 35 tonnes (t) per year during the mid-1980s and then progressively declined to 3.7 t in 1990–91. They were low during the 1990s, averaging 3.7 t per annum, before increasing to 11 t in 2002–03. By 2008–09, catches had fallen to 1.7 t and they have been less than 2 t in most years since. The total catch of 3.4 t in 2021–22 was the highest catch since 2007–08, despite the implementation of a fishery closure from 1 August 2021 to 31 January 2022, aimed at recovering the stock. Nevertheless, the low catches over the past two decades have been associated with low targeted effort. Given the high wholesale value of Black Bream compared to other LCF species [EconSearch 2022], the lack of targeting since the 1980s has been indicative of low biomass.  

Annual fishery age structures from 2007–08 to 2021–22 comprised mostly 4 to 17-year-old fish, although fish older than 10 years were rare, despite the potential for this species to live up to 32 years of age [Ye et al. 2022]. Within any year, few age classes contributed most to the catch, reflecting the relative strength of these year classes. This variation in year class strength relates to inter-annual variation in recruitment. Larger year classes appear to be linked to freshwater releases to the Coorong Estuary in 1997–98, 2003–04, 2006–07, 2009–10, 2012–13, 2015–16 and 2016–17, suggesting that environmental conditions associated with freshwater inflow are important for successful reproduction of Black Bream in the Coorong [Ye et al. 2022]. The recruitment of these year classes to the fishable biomass indicates that environmental conditions in the Coorong Estuary supported successful spawning in those years. In 2021–22, catches were dominated by fish from the 2017–18 and 2016–17 year classes (4 and 5 years old, respectively) [Ye et al. 2022]. In recent years fishery production has remained low despite the recruitment of young fish to the fishable biomass, which indicates that recruitment levels have not been strong enough to support recovery of the stock. In 2022, successful recruitment of Black Bream in the Coorong was evident by the detection of higher-than-average abundances of young-of-year that likely originated from spawning that occurred in 2020–21 in association with low-moderate freshwater inflows [Ye et al. 2022]. Recruitment of these juveniles to the fishable biomass has not yet occurred and is expected to take several years.  

The above evidence indicates that the biomass of this stock has been reduced through fishing mortality, such that recruitment is impaired. Management measures to recover the stock from its recruitment impaired state have been implemented since 2018; however, measurable improvements are yet to be detected.

On the basis of the evidence provided above, the Lakes and Coorong Fishery management unit is classified as a depleted stock.

South Australia Marine Scalefish Fishery

Black Bream is a Tier-3 species in South Australia's commercial Marine Scalefish Fishery (MSF). The MSF Black Bream stock encompasses the populations in marine waters of South Australia, outside the Coorong Estuary and Lower Lakes [Earl et al. 2016].  

The most recent assessment of this stock was completed in 2023 and used a weight-of-evidence approach that considered MSF data to the end of June 2022 [Smart et al. 2023]. The primary measures of biomass and fishing mortality are total catch and nominal catch rate from commercial fishers.  

Total annual catch in the MSF averaged less than 1.5 t per annum from 1983–84 to 2005–06, due to low targeted effort. Between 2014–15 and 2018–19, catches were marginally higher, ranging from 1.7–3.2 t per annum, and estimates of annual catch rate were, on average, around 80% higher than the long-term average catch rate for the sector [Smart et al. 2023]. Estimates of total catch and catch per unit effort (CPUE) for 2021–22 are confidential (i.e., based on data reported by fewer than five licence holders), but are both stable with no evidence of recent declines. While Black Bream is not a major component of recreational landings in South Australia, the recreational sector accounts for a considerable proportion of the state’s total catch of Black Bream. The estimated harvest of Black Bream by the recreational sector in 2021–22 was 5.5 t, which represented approximately 66% of the state's total combined commercial and recreational catch [Beckmann et al. 2023].  

The above evidence indicates that the biomass of this stock is unlikely to be depleted, that recruitment is unlikely to be impaired and that the current level of fishing mortality is unlikely to cause the stock to become recruitment impaired.

On the basis of the evidence provided, the South Australia MSF management unit is classified as a sustainable stock.

Toggle content

Biology

Black Bream biology [Kuiter 1993; Sarre and Potter 2000; Walker and Neira 2001; Cheshire et al. 2013]

Biology
Species Longevity / Maximum Size Maturity (50 per cent)
Black Bream

37 years, 600 mm TL

180–340 TL mm

Toggle content

Distributions

Distribution of reported commercial catch of Black Bream

Toggle content

Tables

Fishing methods
South Australia
Commercial
Hook and Line
Gillnet
Unspecified
Seine Nets
Handline
Indigenous
Hook and Line
Gillnet
Handline
Recreational
Hook and Line
Gillnet
Handline
Management methods
Method South Australia
Commercial
Effort limits
Gear restrictions
Limited entry
Size limit
Spatial closures
Temporal closures
Indigenous
Bag limits
Gear restrictions
Size limit
Spatial closures
Temporal closures
Recreational
Bag limits
Gear restrictions
Size limit
Spatial closures
Temporal closures
Catch
South Australia
Commercial 3.42t
Indigenous Unknown
Recreational 5.5 t (in 2021–22)

New South Wales – Recreational (Catch). Murphy et al. [2022].

New South Wales – Indigenous (Management Methods). (https://www.dpi.nsw.gov.au/fishing/aboriginal-fishing

Victoria - Recreational fishing (Management Methods). Recreational fishing licence requirement, and  minimum legal size, maximum legal size  and a bag limits  apply. For further details see  https://vfa.vic.gov.au/recreational-fishing/recreational-fishing-guide/catch-limits-and-closed-seasons/types-of-fish/marine-and-estuarine-scale-fish/bream-all-species

Victoria – Indigenous (Management Methods). A person who identifies as Aboriginal or Torres Strait Islander is exempt from the need to obtain a Victorian recreational fishing licence, provided they comply with all other rules that apply to recreational fishers, including rules on equipment, catch limits, size limits and restricted areas. Traditional (non-commercial) fishing activities that are carried out by members of a traditional owner group entity under an agreement pursuant to Victoria’s Traditional Owner Settlement Act 2010 are also exempt from the need to hold a recreational fishing licence, subject to any conditions outlined in the agreement. Native title holders are also exempt from the need to obtain a recreational fishing licence under the provisions of the Commonwealth’s Native Title Act 1993.

Tasmania – Recreational (Management Methods). In Tasmania, a recreational licence is required for fishers using dropline or longline gear, along with nets, such as gillnet or beach seine. The species is subject to a minimum size limit of 250 mm. A bag limit of five individuals and a possession limit of ten individuals is in place for recreational fishers fishing in marine waters.

Tasmania - Indigenous (Management Methods). In Tasmania, Indigenous persons engaged in traditional fishing activities in marine waters are exempt from holding recreational fishing licences but must comply with all other fisheries rules as if they were licensed. For details, see the policy document 'Recognition of Aboriginal Fishing Activities” (https://fishing.tas.gov.au/Documents/Policy%20for%20Aboriginal%20tags%20and%20alloting%20an%20UIC.pdf).

Western Australia – Recreational (Management Methods). In Western Australia a recreational fishing licence is only required for fishing from a boat. Black Bream are subjected to a minimum size limit of 250 mm TL and a bag limit of six (of which only two fish may be over 400 mm TL if fishing in the Swan and Canning rivers).

Toggle content

Catch Chart

Commercial catch of Black Bream - note confidential catch not shown

Toggle content

References

  1. Beckmann, CL, Durante, LM, Graba-Landry, A, Stark, KE and Tracey, SR 2023, Survey of Recreational Fishing in South Australia 2021-22. Report to PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic and Livestock Sciences), Adelaide. SARDI Publication No. F2022/000385-1. SARDI Research Report Series No. 1161. 185pp.
  2. Bell, JD, Ingram, BA, Gorfine, HK and Conron SD 2023, Review of key Victorian fish stocks — 2022, Victorian Fisheries Authority Science Report Series No. 38, First Edition, June 2023. VFA: Queenscliff. 46pp.
  3. Burridge, CP and Versace, VL 2007, Population genetic structuring in Acanthopagrus butcheri (Pisces: Sparidae): does low gene flow among estuaries apply to both sexes? Marine Biotechnology 9, 33–44.
  4. Burridge, CP, Hurt, AC, Farrington, LW, Coutin, PC and Austin, CM 2004, Stepping stone gene flow in an estuarine dwelling sparid from south‐east Australia. Journal of Fish Biology 64, 805–819.
  5. Butcher, AD and Ling, JK 1962, Bream tagging experiments in East Gipsland during April and May 1944. Victorian Naturalist 78, 256–264.
  6. Chaplin, JA, Baudains, GA, Gill, HS, Mccullock, R and Potter, IC1997, Are assemblages of black bream (Acanthopagrus butcheri) in different estuaries genetically distinct? International Journal of Salt Lake Research, 6(4):303–321.
  7. Cheshire, KJM, Ye, Q, Fredberg, LJ and Earl, J 2013, Aspects of reproductive biology of five key species in the Murray Mouth and Coorong. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2009/000014-3 SARDI Research Report Series No 699. 65pp.
  8. Conron, S, Giri K, Hall, K and Hamer, P 2016, Gippsland Lakes Fisheries Assessment 2016. Fisheries Victoria Science Report Series No. 14, Fisheries Victoria, Queenscliff.
  9. Conron, SD 2004, Evaluation of recreational management controls of commercially important scalefish species. Final Report to the Fisheries Research and Development Corporation Project No. 1998/146. Marine and Freshwater Resources Institute, Queenscliff.
  10. Conron, SD and Oliveiro, P 2016, State-wide Angler fishing Diary Program 2011–14 Recreational Fishing Grants Program Research Report June 2016. Department of Economic Development, Jobs, Transport and Resources, Queenscliff. 45 pp.
  11. Conron, SD, Grixti D and Morison AK 2010, Survival of snapper and black bream released by recreational hook-and-line fishers in sheltered coastal temperate ecosystems. Final report to Fisheries Research and Development Corporation Project No. 2003/074. Department of Primary Industries, Queenscliff, Victoria.
  12. Cottingham, A 2008, The current state of the stock of Black Bream Acanthopagrus butcheri in the Swan-Canning Estuary. Honours Thesis, Murdoch University, Western Australia.
  13. Cottingham, A, Hall, NG, Loneragan, NR, Jenkins, GI and Potter, IC 2020, Efficacy of restocking an estuarine-resident species demonstrated by long-term monitoring of cultured fish with alizarin complexone-stained otoliths. A case study. Fisheries Research, 227.
  14. Cottingham, A, Huang, P, Hipsey, MR, Hall, NG, Ashworth, E, Williams, J and Potter, IC 2018, Growth, condition, and maturity schedules of an estuarine fish species change in estuaries following increased hypoxia due to climate change. Ecology and Evolution, 8(14), 7111–7130.
  15. Cottingham, A. Hall, NG and Potter, IC 2015, Performance and contribution to commercial catches and egg production by restocked Acanthopagrus butcheri (Sparidae) in an estuary. Estuarine, Coastal and Shelf Science 164, 194–203.
  16. Duffy, R, Harris, D, Brooks, B, Blazeski, S and Quinn, A 2023, South coast estuarine and nearshore scalefish and invertebrate resource status report. In: Status Reports of the Fisheries and Aquatic Resources of Western Australia 2021/22: The State of the Fisheries eds. Newman, S.J., Wise, B.S., Santoro, K.G. and Gaughan, D.J. Department of Primary Industries and Regional Development, Western Australia. pp. 213-221
  17. Earl, J 2023, Assessment of the South Australian Lakes and Coorong Fishery in 2021/22. Report to PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2020/000208-04. SARDI Research Report Series No. 1176. 94pp.
  18. Earl, J, Mackay, A and Goldsworthy, S 2021, Developing alternative strategies for managing seal-fisher interactions in the South Australian Lakes and Coorong Fishery. FRDC Project 2016-001. South Australian Research and Development Institute (Aquatic Sciences), Adelaide.
  19. Earl, J, Ward, TM and Ye, Q 2016, Black Bream (Acanthopagrus butcheri) Stock Assessment Report 2014/15. Report to PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2008/000810-2. SARDI Research Report Series No. 885. 44pp.
  20. EconSearch 2022, Economic and social indicators for the South Australian Lakes and Coorong Fishery 2020/21. A report to PIRSA Fisheries and Aquaculture, prepared by BDO EconSearch, Adelaide. 101 pp.
  21. Farrington, LW, Austin, CM and Coutin, PC 2000, Allozyme variation and stock structure in the black bream, Acanthopagrus butcheri (Munro) (Sparidae) in southern Australia: implications for fisheries management, aquaculture and taxonomic relationship with Acanthopagrus australis (Gunther). Fisheries Management and Ecology 7, 265–279.
  22. Gray, CA 2022, Variation in growth, length and age characteristics of estuarine Acanthopagrus (Sparidae) populations in New South Wales, Australia. Regional Studies in Marine Science, 55: 102481
  23. Hall, DA 1984, The Coorong: Biology of the major fish species and fluctuations in catch rates 1976–1983, SAFIC 8(1), 3–17.
  24. Hamer, P, Whitten, A, and Giri, K 2019, Developing tools to inform management risk and improve recreational fishery monitoring for a complex multi-sector, multi-jurisdiction fishery: the ‘Western Victorian Snapper Stock’. Final Report, FRDC project 2013/201, Fisheries Research and Development Corporation, Canberra.
  25. Hindell, JS, Jenkins, GP and Womersley, B 2008, Habitat utilisation and movement of black bream Acanthopagrus butcheri (Sparidae) in an Australia estuary. Marine Ecology Progress Series 366, 219–229.
  26. Hoeksema, SD, Chuwen, BM and Potter, IC 2006, Massive mortalities of the black bream Acanthopagrus butcheri (Sparidae) in two normally-closed estuaries, following extreme increases in salinity. Journal of the Marine Biological Association of the United Kingdom, 86(4), 893–897.
  27. Kailola, PJ, Williams, MJ Stewart, PC, Reichelt, RE, McNee, A and Graive, C 1993, Australian Fisheries Recourses. Canberra, Australia. Vol. Australian Fisheries Resources pp.18–320 (Bureau of Resource Sciences, Fisheries Research and Development Corporation; Brisbane).
  28. Kemp J, Brown L, Bridge N and Conron S 2013, Black Bream Stock Assessment 2012. Fisheries Victoria Assessment Report No 42.
  29. Kuiter, RH 1993, ʹCoastal fishes of southeastern Australia.ʹ (University of Hawaii Press: Honolulu, Hawaii).
  30. Lyle, JM, Stark KE and Tracey SR 2014, 2012-13 survey of recreational fishing in Tasmania. Institute for Marine and Antarctic Studies, Hobart.
  31. Lyle, JM, Stark, KE, Ewing, GP and Tracey, SR 2019, 2017-18 Survey of recreational fishing in Tasmania. Institute for Marine and Antarctic Studies, Hobart, Tasmania.
  32. Lyle, JM, Tracey, SR, Stark KE and Wotherspoon, S 2009, 2007–08 survey of recreational fishing in Tasmania. Tasmania Aquaculture and Fisheries Institute, Hobart.
  33. Murphy, JJ, Ochwada-Doyle, FA, West, LD, Stark, Hughes, JM and Taylor, MD 2022, Survey of recreational fishing in NSW, 2019/20 - Key results. Fisheries Final Report Series No. 161.
  34. Murphy, JJ, Ochwada-Doyle, FA, West, LD, Stark, KE and Hughes, JM 2020, The NSW Recreational Fisheries Monitoring Program - survey of recreational fishing, 2017/18. NSW DPI - Fisheries Final Report Series No. 158.
  35. Norriss, JV, Tregonning, JE, Lenanton, RCJ and Sarre, GA, 2002, Biological synopsis of the black bream, Acanthopagrus butcheri (Munro)(Teleostei: Sparidae) in Western Australia with reference to information from other southern states. Fisheries Research Report No.93, Department of Fisheries, Western Australia.
  36. Ochwada-Doyle, F, Roberts, D, Gray, C, Barnes, L, Haddy, J and Fearman, J 2012, Characterizing the biological traits and life history of Acanthopagrus (Sparidae) hybrid complexes: implications for conservation and management. Journal of Fish Biology, 81: 1540–1558.
  37. Roberts, DC, Gray, CA, West RF and Ayre, DJ 2009, Evolutionary impacts of hybridization and interspecific gene flow on an obligately estuarine fish. Journal of Evolutionary Biology, 22: 27–35.
  38. Roberts, DG, Gray, CA, West, RJ and Ayre, DJ 2010, Marine genetic swamping: hybrids replace an obligately estuarine fish. Molecular Ecology, 19: 508–520.
  39. Roberts, DG, Gray, CA, West, RJ and Ayre, DJ 2011, Temooral stability of a hybrid swarm between the migratory marine and estuaries fishes Acnathopagrus australis and A. butcheri, Marine Ecology Progress Series, 421: 199–204
  40. Ryan, KL, Lai, EKM and Smallwood, CB 2022, Boat-based recreational fishing in Western Australia 2020/21. Fisheries Research Report No. 327 Department of Primary Industries and Regional Development, Western Australia. 221pp.
  41. Sarakinis, KG, Reis-Santos, P, Donnellan, SC, Ye, Q, Earl, J and Gillanders, BM 2024, Strong philopatry in an estuarine-dependent fish. Ecology and Evolution, 14(3), e10989.
  42. Sarre, GA and Potter, IC 2000, Variation in age compositions and growth rates of Acanthopagrus butcheri (Sparidae) among estuaries: some possible contributing factors. Fishery Bulletin 98, 785–799.
  43. Smart, JJ, McGarvey, R, Feenstra, J, Drew, MJ, Earl, J, Durante, L, Beckmann, CL, Matthews, JM, Mark, K, Bussell, J, Davey, J, Tsolos, A and Noell, C 2023, Assessment of the South Australian Marine Scalefish Fishery in 2021/22. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2017/000427-6. SARDI Research Report Series No. 1184. 259pp.
  44. Steer, MA, Fowler, AJ, Rogers, PJ, Bailleul, F, Earl, J, Matthews, D, Drew, M, and Tsolos, A, 2020, Assessment of the South Australian Marine Scalefish Fishery in 2018. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2017/000427-3. SARDI Research Report Series No. 1049. 214pp.
  45. Tate, AC, Rudd, LJ and Smallwood, CB 2022, Shore-based recreational fishing in the Perth Metropolitan area: 2022. Department of Primary Industries and Regional Development, Perth. Report 326.
  46. van der Meulen, DE, Walsh, CT, Reinfelds, IV, Payne, NL, Ives, MC, Roberts, DG, Craig, JR, Gray, CA and Taylor, MD 2023, Estuarine movements in a sparid hybrid complex. Marine and Freshwater Research, 74: 625–640.
  47. Victorian Fisheries Authority (VFA) 2023, Media release September 2023. Changes to bolster black bream fishing future.
  48. Victorian Fisheries Authority (VFA) 2023, Victorian Fisheries Authority News 15 Sep 2023. Changes to bolster black bream fishing future.
  49. Victorian Fisheries Authority (VFA), June 2020. Gippsland Lakes Recreational Fishery Plan 2020. 20 pp.
  50. Victorian Fisheries Authority, Broadhurst, M, Earl, J, Duffy, R, and Krueck, N, 2021, Southern Calamari Sepioteuthis australis, in Toby Piddocke, Crispian Ashby, Klaas Hartmann, Alex Hesp, Patrick Hone, Joanne Klemke, Stephen Mayfield, Anthony Roelofs, Thor Saunders, John Stewart, Brent Wise and James Woodhams (eds) 2021, Status of Australian fish stocks reports 2020, Fisheries Research and Development Corporation, Canberra.
  51. Walker, S and Neira, F J 2001, Aspects of the reproductive biology and early life history of black bream, Acanthopagrus butcheri (Sparidae), in a brackish lagoon system in southeastern Australia. Journal of Ichthyology and Aquatic Biology, 4, 135–142.
  52. Williams, J, Hindell, JS, Swearer, SE and Jenkins GP 2012, Influence of freshwater flows on the distribution of eggs and larvae of black bream Acanthopagrus butcheri within a drought-affected estuary.
  53. Williams, J, Hindell, JS, Swearer, SE and Jenkins, GP 2012, Influence of freshwater flows on the distribution of eggs and larvae of black bream Acanthopagrus butcheri within a drought affected estuary. Journal of Fish Biology, 80, 2281–2301.
  54. Ye, Q, Bucater, L and Short, D 2022, Coorong fish condition monitoring 2008-2021: Black bream (Acanthopagrus butcheri), greenback flounder (Rhombosolea tapirina) and smallmouthed hardyhead (Atherinosoma microstoma) populations. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2011/000471-9. SARDI Research Report Series No. 1129. 77 pp.

Downloadable reports

Click the links below to view reports from other years for this fish.